
Whitepaper

Architecture of
DirectSearch CORE

In this document, we will explain how Cloudtenna
is able to overcome key roadblocks that have
historically made cross-silo file services
impossible.

File search presents a unique challenge for enterprise platforms. To support large scale search,
solutions require specialized infrastructure designed specifically for unstructured data.
Engineers at Cloudtenna have developed a brand new global-name-space architecture to make
it easy to add advanced cross-silo file management services to any application.

Introduced below is a revolutionary new architecture that separates metadata and content. By
separating the document extraction process from the indexing process, Cloudtenna is able to
overcome key roadblocks that have historically made cross-silo file services impossible.

KEY CHALLENGES

Search must respect file permissions
For file search, every user receives a personalized experience. Each user has access to a
different set of documents, defined by file permissions. This is in contrast to traditional web
search engines which search over a corpus of documents that are largely the same for all users.
File search is burdened with the additional task of enforcing per-user and per-group file
permissions on each and every search query.

Data is scattered across unharmonious file repositories
Files are scattered across all the tools users use in their daily workflow. Universal search must
normalize these disparate data sets into a single searchable index. For example, an employee at
a large enterprise has access to files on the company’s on-premises file server, collaborates
with the marketing team using Dropbox, communicates with the engineering team via Slack,
and uploads invoices to Salesforce. It is almost impossible to remember where any document is
stored. This user needs a birds-eye view to search for documents regardless of where they are
stored. File search infrastructure must be able to index content and reconcile file permissions
across a wide range of data sources – each which use their own proprietary APIs and file
permission paradigms. It’s not enough to just index this dispersed content, but this content
must be normalized into a single global-name-space.

Content is updated frequently
The most commonly searched for content is hot data – files that have been recently updated.
When performing a search, a user is more likely to be looking for a file updated yesterday than
a file last touched over a year ago. To make sure recent file updates return in search results,
search infrastructure must quickly recognize new content and quickly update the search index.
Across an enterprise, content changes often and search infrastructure must be able to keep up.

Security is paramount
For an enterprise, data protection is an absolute bedrock principle – no solution can be adopted
that risks exposing sensitive data. As discussed above, file search must only return search
results the user has permissions to view. The first challenge is understanding and enforcing file
permissions. The second challenge is updating file permissions as to not expose a window of

time when a user can search for files he no longer has permissions to view. If a user is moved
from the Sales-group to the Marketing-group, potentially millions of objects in the search
database need to be updated to reflect the user’s new file permissions. Search infrastructure
must account for this update within a reasonable amount of time to prevent a serious security
gap.

Rank results by relevancy
We want to help users find the most relevant documents for a given query. This requires being
able to leverage machine intelligence at several stages in the search pipeline, from content-
specific machine learning (such as image understanding systems) to learning systems that can
better rank search results and file recommendations to suit each user’s preferences.

Data indexing is expensive
At the heart of every search infrastructure in an index of searchable terms. Collecting and
maintaining these keywords is historically a heavy operation. At enterprise scale, these
challenges make traditional search prohibitively expensive.

The first challenge is compute requirements. For example, a data crawler is responsible to
recognize and re-index file changes in near real-time. In a company of 1,000 employees, it is
cost prohibitive to run 1,000 simultaneous crawlers (one for each user) and is downright
dangerous because 1,000 simultaneous file-reads is sure to slow the source file server to a
crawl – blocking normal direct access for users while the crawlers are performing their index.
Unless the usecase does not require new content to be indexed until off-hours, a different
lightweight architecture is required.

The second challenge is storage costs. Enterprises typically have millions if not billions of files
stored across their many repositories. Search infrastructure stores a full-text-index of each file
object so that files can be retrieved via keyword search queries. The cost of this storage is
astronomical. Luckily, predictable patterns unlock ways to reduce the required storage
footprint. In fact, a lot of that content is duplicates of the same content, just in different
locations. To keep costs within budget, file search infrastructure must take advantage of natural
language processing (NLP), smart deduplication, and other techniques to manage storage costs.

PRIMARY OBJECTIVES:

• Deliver best-in-class performance, scalability, and reliability to deal with the scale of
enterprise file search

• Build a flexible system that would allow our partners to easily customize the document-
indexing and query-processing pipelines so that they can tailor the infrastructure for
their usecase

• Set strong safeguards to preserve the privacy of users’ data

In this blog post we describe the architecture of the DirectSearch CORE and its key
characteristics, provide details about the choices we made in terms of technologies and

approaches we chose for the design, and explain how we make use of machine learning (ML) at
various stages of the system.

High-level architecture:
DirectSearch consists of three mostly-independent sub-components: Data connectors, our
analytics engine (DirectSearch CORE), and a front-end search UI. Cloudtenna core technology
and key architecture decisions are housed almost entirely inside the analytics engine.
Complexity is extracted out of the data connectors and front-end UI to make it easy for
partners to build their own substitute components.

Data connectors
Cloudtenna DirectSearch is designed to provide global file search – meaning that it can ingress
data from any and all data sources. Every data source, though, has its own set of APIs,
authentication mechanisms, and file permission paradigms. Cloudtenna uses a set of per-
service data connectors to communicate with source repositories.

The role of the data connectors are to recognize file and user activity, extract content and
metadata, and send the metadata to the analytics engine. The analytics engine then later
handles the heavy lifting like ACL crunching and deduplication so that the connectors are not
burdened with bloated logic. Through this architecture, the data connectors have limited scope
which makes them easy to build and maintain.

Cloudtenna provides reference architecture for common file storage connectors including
Dropbox, Box, Microsoft OneDrive, Google Drive, Gmail, Outlook, Slack, JIRA, Confluence, and
on-premises CIFS filers. By design, partners can use our connector-templates to build their own
additional connectors to other services.

Analytics Engine (DirectSearch CORE):
The analytics engine comprises of three core components: the index builder, the retrieval
engine, and intelligent ranking engine. Cloudtenna developed theses purpose-built components
from the ground up to overcome challenges specific to file-management usecases.

The index builder
As discussed above, the analytics engine works in tandem with a series of data connectors to
third-party services. The analytics engine is responsible for receiving content and metadata
from the connectors and using this data to build a searchable index. Unlike common solutions
that require heavy operations and off-hour batching, DirectSearch CORE uses SPARK in-memory
processing which allows for real-time (deterministic) updates. This means that as soon as the
analytics engine receives an update – for example that a user has subscribed to a new AD group
– the analytics engine immediately begins to build the updated index.

For a deeper technical dive into Cloudtenna’s real-time binding, please read our Security
Binding white-paper about the advantages of real-time binding vs early/late binding.

The retrieval engine
Upon receiving a query from a user, the first task performed by the analytics engine is to call
the DirectSearch CORE identity management (IDM) service to determine the exact set of third-
party services and ACLs the user has read access to view. The IDM service solves the user
reconciliation problem – associating the querying-user to the multiple disparate third-party
services that user has connected. This set defines the “scope” of the query that will be
performed by the downstream retrieval engine, ensuring that only content accessible to the
user will be searched.

After collecting the list of candidate documents from the search backends, the retrieval engine
fetches additional signals and metadata as needed, before sending that information to a
separate ranking service, which in turn computes the scores to select the final list of results
returned to the user.

The ranking engine
The ranking engine is designed to help surface the documents that the user is most likely to
want right now. The retrieval engine may return a result of 75 files. It is the ranking engine’s
responsibility to further filter the results to boost relevant results to the top of the search
results. Think in terms of trying to get the exact website you are looking for to show up on the
first page of a Google search.

The ranking engine is powered by a ML model that outputs a score for each document based on
a variety of signals. Some signals measure the relevance of the document to the query, while
others measure the relevance of the document to the user at the current moment in time (e.g.,
who the user has been interacting with, or what types of files the user has been working on).
The model is trained using “click” data from our front-end. Given searches in the past and
which results were clicked on, we can learn general patterns of relevance.

The ranking engine is capable of filtering on a number of pre-built heuristics like file-type and
last modified time. The ML-capabilities mean it is possible to build relevancy scores based on an
exploding number of additional heuristics.

Front-end UI:
As reference architecture, Cloudtenna delivers a beautiful front-end web-UI designed for cross-
silo file search. Partners typically wish to use APIs to embed results directly into their own UI.
Cloudtenna’s services documented via Swagger for easy integration.

DEEPER DIVE:

Indexing-pipeline
As discussed above, DirectSearch CORE receives updates from data connectors connected to
third-party data sources. Every service provides different insight into how to crawl and
recognize file updates. As a result, each connector can be optimized to take advantage of the
particular end-points available.

• The default way to crawl for new content is to periodically iterate through all files in the
data source and check for updates. This works on all data sources.

• Some data sources provide additional endpoints like event notifications and audit logs
which can point the crawler to new file updates without the need to the iterate through
the entire file tree. If these endpoints are available from the data source, a crawler can
recognize file updates much faster and pass the update sooner to the analytics engine
for real-time processing into the index.

The indexing process recognizes when a file or user setting needs to be extracted. We separate
the indexing process from the document extraction process. This enables support for multiple
different data pipelines and other advantages like easy deduplication and fast file delete
cleanup.

For most documents, we rely on Apache Tika to transform the original document into a
canonical text-based representation, which then gets parsed in order to extract a list of
“tokens” (i.e. words) using natural language processing (NLP). This extraction, which strips away
content formatting and other unnecessary metadata can reduce storage size by up to 1:17x
depending on usecase. The architecture also supports alternative data pipelines a partner may
wish to implement, like Tensorflow for image recognition.

Search index architecture
The format of traditional data stores are not well-suited for running searches. This is because it
stores extracted content mapped by document id. For search, we need an inverted index: a
mapping from search term to list of documents. Essentially, our architecture creates a
metadata global-name-space parallel to third-party document stores.

By separating the document extraction process from the indexing process, we gain a lot of
flexibility:

• Support for multiple data pipelines
• Smart deduplication to keep storage costs down
• Quickly remove content from the index after a file delete

